Формообразование сложнопрофильных деталей на автоматизированных профилегибочных машинах относится к операциям объемного совмещенного пластического формообразования. Заготовка подвергается существенным изменениям своей первоначальной формы (прямолинейной, реже — криволинейной) и испытывает значительные деформации и смещения сечений. Формообразованием на профилегибочных машинах в авиастроении изготовляются листовые и профильные заготовки. Процесс занимает одно из ведущих мест по трудоемкости в изготовлении самолета или другого изделия авиационной техники. Трудоемкость изготовления гнутых профилей составляет 25 — 27 % от общего объема. К формообразуемым деталям относят стрингеры, шпангоуты, пояса нервюр и лонжеронов.
Профилегибочные машины с ручным управлением получили широкое распространение в начале пятидесятых годов прошлого века в связи с началом выпуска цельнометаллических фюзеляжей самолетов. За счет ее использования в технологии изготовления сложнопрофильных деталей удалось предотвратить потерю устойчивости плоской формы профиля при формообразовании, повысить точность изготовления деталей из авиационных сплавов.
В последние тридцать лет исследовались вопросы теории процессов формообразования сложнопрофильных деталей методами гибки, поставлены и во многом решены задачи силового и координатного управления формообразованием. Так же разработана система автоматизированного проектирования и расчета технологических параметров процесса гибки с растяжением, проводились исследования процессов гибки с растяжением с применением дифференциального нагрева и устройства доводки внешнего слоя профиля с помощью раскатывающего ролика.
Однако вопросы автоматического управления формообразованием при гибке с растяжением, обеспечения универсальности и слабой зависимости от входных возмущающих факторов и параметров до сих пор были проработаны совершенно недостаточно. Существующее в производстве оборудование в основном реализует способ управления формообразованием по усилиям (давлению в полостях гидроцилиндров).
Автоматизированные профилегибочные машины, оснащенные датчиками линейных и угловых перемещений, получили возможность осуществления формообразования по перемещениям, а также по скоростям перемещений. В числе выпущенных и выпускаемых машин необходимо выделить ПГР-6, ПГР-7, ПГР-6А, ПГР-6АД. Последние две оснащены УЧПУ 2Р32М. Внедрение профилегибочных машин с числовым программным управлением, таких, как ПГР-6АД, при программировании методом обучения позволяет неограниченное число раз воспроизводить эмпирически подобранную программу перемещения рабочих органов по координатам.
При исследовании вопросов формообразования сложнопрофильных деталей на оборудовании гибки с растяжением учитывался опыт современного машиностроения, а также исследования в области пластического деформирования профильных заготовок из авиационных сплавов методами гибки. Необходимо отметить значительное число изобретений, посвященных схемным и конструктивным решениям оборудования гибки с растяжением.. Существует большое количество информационных материалов по близким аналогам процесса формообразования на гибочных машинах. К ним можно отнести публикации по металлорежущему, сварочному оборудованию, средствам автоматизации процессов производства, по другим близким тематикам.
Областью настоящего исследования является достаточно узкая специализация — формообразование на профилегибочных машинах.
Основными отличительными чертами рассматриваемых процессов формообразования являются приложение растягивающих усилий, выводящих материал заготовки в зону пластических деформаций, и использование шаблона или пуансона, задающих требуемый контур. Гибка с растяжением с опорой на пуансон позволяет значительно уменьшить пружинение детали, возникающее вследствие неравномерности изгибных нормальных напряжений по сечениям, а также повышать точность изготовления детали в поперечном сечении за счет предотвращения потери устойчивости плоской формы (закручивания, малковки, серповидности).
Особенности летательных аппаратов определяют конструкционные и обусловленные ими взаимнопротиворечивые требования к материалам. Как правило выбор материала в сторону улучшения конструкционных свойств приводит к возможному ухудшению показателей технологичности. В авиастроении применяются материалы с низким удельным весом и достаточной прочностью — алюминиевые, магниевые, титановые сплавы, упрочняемые и неупрочняемые термической обработкой.
Число деталей из профилей может достигать десятков тысяч, общая их длина — до 30 км, размеры деталей от 25 до 1000 мм, масса может меняться от 0,01 до 25 кг. К числу технологических параметров относят пластичность, обрабатываемость резанием, свариваемость.
Среди причин и доминирующих факторов, влияющих на возникновение погрешности детали, связанных с заготовкой, можно выделить вариации размерно-механических параметров. К размерным параметрам относятся изменения размеров поперечных сечений по длине, толщины полки и другие, а также их различия в партии.
Изменение свойств материала заготовки связано со способом изготовления профиля (гибкой из листа на штампах, фрезерованием), а также термообработкой (отжигом, закалкой на воздухе или селитровой ванне). Для авиационных сплавов, упрочняемых термообработкой, в частности Д16Т, происходят значительные изменения механических свойств во времени, поэтому для этих сплавов разрешена гибка с растяжением в свежезакаленном состоянии только в течение первых двух часов. В соответствии с технологией, применяемой в авиационной промышленности, детали изготовляют обязательно партиями.
Формообразование заготовок производится при различной температуре в зависимости от требований технологического процесса. Применяется операция дополнительного нагрева заготовки до температуры 420 С0, при которой имеют место высокие пластические свойства заготовки, уменьшающие момент внутренних нагрузок.
Погрешности установки имеют как случайные, так и систематические составляющие. К ним, в частности, относятся погрешности установки по высоте, в горизонтальной плоскости, углы перекоса и наклона.
Применение смазки может оказывать различное влияние на точность и надежность процесса формообразования. Смазка при ориентации «полка внутрь» уменьшает остаточные деформации пружинения, для ориентации «полка наружу» — наоборот, может увеличить остаточные деформации.
К факторам технологической наследственности, которые в разное время и в разных условиях могут оказывать влияние на выходные параметры, относятся вариации механических свойств поверхностного слоя (в зависимости от способа предварительного формообразования), шероховатость поверхности, наличие смазки, технологических отверстий на концах профиля и другие.
Анализ причин погрешностей формообразования, связанных с обтяжным пуансоном, в свою очередь, проводится с учетом погрешностей изготовления его контура и базовых отверстий пуансона, случайным и систематическим смещением его сегментов друг относительно друга.
Также к влияющим факторам относится температура пуансона, что особенно важно при предварительном нагреве заготовки. Совершенно очевидно влияние износа контура пуансона и налипания на него посторонних частиц на точность формообразования.
Жесткость материала обтяжного пуансона, стыков соединения его сегментов также может влиять на изменение выходных параметров детали, причем в ряде случаев малая жесткость пуансона, особенно на его концах, приводит к уменьшению погрешностей формообразования.
В свою очередь погрешности установки оказывают различное влияние на возникновение погрешностей формообразования. Например, самоустанавливаемость в плоскости гибки пуансона для формообразования по усилиям практически не влияет на изменение остаточных деформаций. Наоборот, при управлении по перемещениям остаточные деформации увеличиваются для самоустанавливающихся пуансонов.
Погрешности установки разделяются на линейные, угловые, в плоскости и из плоскости гибки, комбинированные.
Различные причины, связанные с исполнительными устройствами оборудования гибки с растяжением, также влияют на снижение точности и надежности формообразования. Вполне очевидно влияние температуры узлов, а также температуры рабочей жидкости. Геометрические параметры, износ подшипников, кулачков патронов, вылет зажимных патронов, деформации узлов оказывают влияние на точность в зависимости от конкретных условий и способа управления формообразованием по перемещениям, усилиям, скоростям и моментам.
К погрешности настройки кинематической схемы могут быть отнесены погрешности задания расстояния между центрами качания крыльев, диапазон рабочих перемещений зажимных патронов и другие.
Влияние условий формообразования также во многом задает априорную неопределенность реализации процесса. Температура внешней среды влияет на точность формообразования опосредовано, через температуру заготовки, пуансона, углов и рабочей жидкости.
Трение между заготовкой и пуансоном и их взаимная ориентация изменяют напряженно-деформированное состояние контактирующего слоя профиля, положение нейтрального слоя и, следовательно, необходимое усилие растяжения. Закрепление профиля предотвращает перетягивание одного гидроцилиндра другим, уменьшает деформации пуансона и снижает влияние нежелательных динамических режимов.
Программно-математическое обеспечение УЧПУ, система автоматизированного проектирования, система активного контроля точностью обработки партии деталей также оказывают влияние на выходные параметры процесса формообразования через параметры силового нагружения. Однако это влияние имеет ряд специфических особенностей, связанных с заданием количества опорных точек в управляющей программе, погрешностями задания управляющих параметров в УП, погрешности интерполяции и др.
Функционирование системы контроля в целом повышает точность формообразования, однако погрешности измерения, неоптимальное формирование корректирующих приращений и погрешности отработки управляющих параметров уменьшают потенциальные возможности системы контроля.
Одним из слабых мест технологии гибки на профилегибочных машинах является необходимость регулировки гидроаппаратуры, например, электрогидроусилителей, требующая высокой квалификации обслуживающего персонала.
Последовательность приложения нагрузок вида «изгиб — растяжение», «растяжение — изгиб», «растяжение — изгиб — растяжение» может иметь различные результаты по увеличению или уменьшению погрешностей формообразования в зависимости от угла гибки, условий формообразования и других факторов. В частности, последовательность «изгиб — растяжение» позволяет достичь наибольшей точности на малых углах гибки. Выбор и задание регулируемых направляющих параметров (момента, скорости, перемещения, силы) в зависимости от входных факторов может оказывать влияние различной степени на вариации выходных параметров.
Условие освобождения профиля, ориентированного «полкой внутрь», могут привести к растяжению профиля или боковому изгибу. Рекомендуется освобождать профиль из пуансона ударами по торцу детали в осевом направлении. Прикатка доводочным устройством внешнего слоя профиля может привести к различным результатам в зависимости от числа проходов и усилия прижима ролика.
При формообразовании могут иметь место кратковременные нестационарные и динамические процессы, они приводят к возникновению отклонений от нормального режима, или даже к аварийной ситуации. В основном эти явления возникают при отладке управляющей программы. При воспроизведении отлаженной программы вероятность их возникновения достаточно низка.
Вывод: На основе выполненных исследований произведен анализ управления формообразованием сложнопрофильных деталей на автоматизированных профилегибочных машинах.
Литература:
- Гибка с растяжением // Энциклопедия по машиностроению XXL. URL: https://mash-xxl.//292689/ (дата обращения: 5.06.2017).
Основные термины (генерируются автоматически): растяжение, формообразование, машина, погрешность установки, точность формообразования, обтяжной пуансон, рабочая жидкость, различное влияние, способ управления, уменьшение погрешностей формообразования.
Гибка — одна из наиболее распространенных операций по изготовлению листового металла. Этот метод, также известен как прессование, отбортовка, гибка штампа, фальцовка и окантовка, этот метод используется для деформации материала до угловой формы.
Это достигается за счет приложения силы к заготовке. Сила должна превышать предел текучести материала для достижения пластической деформации. Только так можно получить стойкий результат в виде изгиба.
Какие методы гибки наиболее распространены? Как пружинистость влияет на изгиб? Что такое k-фактор? Как рассчитать допуск на изгиб?
Все эти вопросы обсуждаются в этом посте вместе с некоторыми советами по гибке.
Методы гибки:
Существует довольно много различных методов гибки. У каждого есть свои преимущества. Обычно возникает дилемма между стремлением к точности или простоте, в то время как последняя находит все большее применение. Более простые методы более гибкие и, что наиболее важно, для получения результата требуется меньше различных инструментов.
V-образный изгиб:
V-образная гибка является наиболее распространенным методом гибки с использованием пуансона и штампа. Она имеет три подгруппы — гибка на основе или нижняя гибка, «свободная» или «воздушная» гибка и чеканка. На воздушную гибку и гибку на основе приходится около 90% всех операций гибки.
Приведенная ниже таблица поможет вам определить минимальную длину фланца b (мм) и внутренний радиус ir (мм) в зависимости от толщины материала t (мм). Вы также можете увидеть ширину матрицы V (мм), которая необходима для таких характеристик. Для каждой операции нужен определенный тоннаж на метр. Это также показано в таблице. Вы можете видеть, что более толстые материалы и меньшие внутренние радиусы требуют большей силы или тоннажа. Выделенные параметры являются рекомендуемыми спецификациями для гибки металла.
График силы изгиба
Допустим, у меня есть лист толщиной 2 мм, и я хочу его согнуть. Для простоты я также использую внутренний радиус 2 мм. Теперь я вижу, что минимальная длина фланца для такого изгиба составляет 8,5 мм, поэтому я должен учитывать это при проектировании. Требуемая ширина матрицы составляет 12 мм, а тоннаж на метр — 22. Самая низкая общая производительность стенда составляет около 100 тонн. Линия гибки моей заготовки составляет 3 м, поэтому общая необходимая сила составляет 3 * 22 = 66 тонн. Таким образом, даже простой верстак, с достаточным количеством места, чтобы согнуть 3-метровые листы, подойдет.
Тем не менее, нужно помнить об одном. Эта таблица применима к конструкционным сталям с пределом текучести около 400 МПа. Если вы хотите согнуть алюминий , значение тоннажа можно разделить на 2, так как для этого требуется меньше усилий. С нержавеющей сталью происходит обратное — требуемое усилие в 1,7 раза больше, чем указано в этой таблице.
Нижнее прессование:
При нижнем прессовании, пуансон прижимает металлический лист к поверхности матрицы, поэтому угол матрицы определяет конечный угол заготовки. Внутренний радиус скошенного листа зависит от радиуса матрицы.
По мере сжатия внутренней линии требуется все большее усилие для дальнейшего манипулирования ею. Нижнее прессование позволяет приложить это усилие, так как конечный угол задан заранее. Возможность приложить большее усилие уменьшает пружинящий эффект и обеспечивает хорошую точность.
Разница углов учитывает эффект пружинящего отката
При нижнем прессовании важным этапом является расчет отверстия V-образной матрицы.
Ширина проема V (мм) | ||||
Метод / Толщина (мм) | 0,5…2,6 | 2,7…8 | 8,1…10 | Более 10 |
Нижнее прессование | 6т | 8т | 10т | 12т |
Свободная гибка | 12…15т | |||
Чеканка | 5т |
Экспериментально доказано, что внутренний радиус составляет около 1/6 ширины проема, что означает, что уравнение выглядит следующим образом: ir = V/6.
Воздушная гибка:
Частичная гибка, или воздушная гибка, получила свое название от того факта, что обрабатываемая деталь фактически не касается деталей инструмента полностью. При частичном гибе заготовка опирается на 2 точки, и пуансон толкает изгиб. По-прежнему обычно выполняется на листогибочном прессе, но при этом нет фактической необходимости в боковом штампе.
Воздушная гибка дает большую гибкость. Допустим, у вас есть матрица и пуансон на 90°. С помощью этого метода вы можете получить результат от 90 до 180 градусов. Хотя этот метод менее точен, чем штамповка или чеканка, в его простоте и заключается его прелесть. В случае, если нагрузка ослабнет, и упругая отдача материала приведет к неправильному углу, его легко отрегулировать, просто приложив еще немного давления.
Конечно, это результат меньшей точности по сравнению с нижним прессованием. В то же время большим преимуществом частичной гибки является то, что для гибки под другим углом не требуется переналадка инструмента.
Чеканка:
Раньше чеканка монет была гораздо более распространена. Это был практически единственный способ получить точные результаты. Сегодня техника настолько хорошо контролируема и точна, что такие методы больше не используются.
Чеканка при гибке дает точные результаты. Например, если вы хотите получить угол в 45 градусов, вам понадобятся пуансон и матрица с точно таким же углом. Не о чем беспокоиться.
Почему? Потому что штамп проникает в лист, вдавливая углубление в заготовку. Это, наряду с большим усилием (примерно в 5-8 раз больше, чем при частичной гибке), гарантирует высокую точность. Проникающий эффект также обеспечивает очень маленький внутренний радиус изгиба.
U-образная гибка:
U-образная гибка в принципе очень похожа на V-образную. Есть матрица и пуансон, на этот раз они имеют U-образную форму, что приводит к аналогичному изгибу. Это очень простой способ, например, гибки стальных U-образных каналов, но он не так распространен, поскольку такие профили также можно производить с использованием других, более гибких методов.
Ступенчатая гибка:
Ступенчатая гибка — это, по сути, многократная V-гибка. Этот метод, также называемый гибовкой вразбежку, использует множество последовательных V-образных изгибов для получения большого радиуса заготовки. Окончательное качество зависит от количества изгибов и шага между ними. Чем их больше, тем более гладким будет результат.
Валковая гибка:
Валковая гибка используется для изготовления труб или конусов различной формы. При необходимости может также использоваться для изгибов с большим радиусом. В зависимости от мощности машины и количества рулонов можно выполнять один или несколько изгибов одновременно.
При этом используются два приводных ролика и третий регулируемый. Этот ролик движется за счет сил трения. Если деталь необходимо согнуть с обоих концов, а также в средней части, требуется дополнительная операция. Это делается на гидравлическом прессе или листогибочном станке. В противном случае края детали получатся плоскими.
Гибка с вытеснением:
При гибке с вытеснением листовой металл зажимается между прижимной подушкой и штампом для протирания. Форма штампа для протирки, расположенного внизу, определяет угол получаемого изгиба. После того, как металлический лист был надежно зажат, перфоратор опускается на свисающий конец металлического листа, заставляя его соответствовать углу протирочной матрицы. Конечным результатом обычно является чеканка металлического листа вокруг протирочного штампа.
Ротационная гибка:
Другой способ — ротационная гибка, она имеет большое преимущество перед гибкой вытеснением или V-образной гибкой — она не царапает поверхность материала. На самом деле, существуют специальные полимерные инструменты, позволяющие избежать каких-либо следов от инструмента, не говоря уже о царапинах. Ротационные гибочные станки также могут сгибать более острые углы, чем 90 градусов. Это очень помогает с общими углами.
Наиболее распространенный метод — с двумя валками, но есть также варианты с одним валком. Этот метод также подходит для производства U-образных каналов с близко расположенными фланцами, так как он более гибкий, чем другие методы.
Возврат при сгибе:
При сгибании заготовка естественным образом немного отскакивает после подъема груза. Следовательно, эту величину необходимо компенсировать при изгибе. Заготовка изгибается под необходимым углом, поэтому после упругого возврата она принимает желаемую форму.
Еще один момент, о котором следует помнить, — радиус изгиба. Чем больше внутренний радиус, тем больше пружинящей эффект. Острый пуансон дает маленький радиус и снимает пружинящий эффект.
Почему происходит пружинение? При сгибании деталей сгиб делится на два слоя разделяющей их линией — нейтральной линией. С каждой стороны происходят разные физические процессы. «Внутри» материал сжимается, «снаружи» — вытягивается. Каждый тип металла имеет разные значения нагрузок, которые они могут воспринимать при сжатии или растяжении. И прочность материала на сжатие намного превосходит прочность на разрыв.
В результате, на внутренней стороне труднее достичь постоянной деформации. Это означает, что сжатый слой не деформируется окончательно и пытается восстановить свою прежнюю форму после снятия нагрузки.
Допуск на изгиб
Если вы проектируете гнутые детали из листового металла в программе CAD, которая имеет специальную среду для работы с листовым металлом, используйте ее. Она существует не просто так. При выполнении изгибов она учитывает спецификации материалов. Вся эта информация необходима при изготовлении плоского шаблона для лазерной резки.
Длина дуги нейтральной оси должна использоваться для расчета развертки.
Если вам понравилась статья, то ставьте лайк, делитесь ею со своими друзьями и оставляйте комментарии!
Литература:
- З.С. Смирнова, Л.М. Борисова, М.П. Киселева и др. Доклиническое изучение противоопухолевой активности производного индолокарбазола ЛХС-1208 // Российский биотерапевтический журнал. 2014. № 1. С. 129.
- Guardia, «La Médecine à travers les âges».
- https://moluch.ru/archive/157/44326/.
- https://www.stankoff.ru/blog/post/285.
- А.В. Ланцова, Е.В. Санарова, Н.А. Оборотова и др. Разработка технологии получения инъекционной лекарственной формы на основе отечественной субстанции производной индолокарбазола ЛХС-1208 // Российский биотерапевтический журнал. 2014. Т. 13. № 3. С. 25-32.
- Frédault, «Histoire de la médecine» (П., 1970).
- З.С. Смирнова, Л.М. Борисова, М.П. Киселева и др. Противоопухолевая эффективность прототипа лекарственной формы соединения ЛХС-1208 для внутривенного введения // Российский биотерапевтический журнал. 2012. № 2. С. 49.
- М.П. Киселева, З.С. Смирнова, Л.М. Борисова и др. Поиск новых противоопухолевых соединений среди производных N-гликозидов индоло[2,3-а] карбазолов // Российский онкологический журнал. 2015. № 1. С. 33-37.